
CSCI5550 Advanced File and Storage Systems

Lecture 04: File System Designs

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk


Outline

CSCI5550 Lec04: File System Designs 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Motivation: Why to develop LFS?

• We need a file system that improves writes:

 System memories are growing.

• More data can be cached in memory to service reads effeciently.

• Disk traffic increasingly consists of writes.

 There is a large gap between random I/O and sequential 

I/O performance in disk.

• Disk transfer bandwidth has increased a lot over the years.

– By packing more bits into the surface of a disk.

• Seek and rotational delay costs have decreased slowly.

 Existing file systems perform poorly.

• FFS incurs many short seeks and rotational delays.

 File systems are not RAID-aware.

• Both RAID-4 and RAID-5 have the small-write problem.

• Existing file systems do not avoid this RAID writing behavior.

CSCI5550 Lec04: File System Designs 3



Log-structured File System (LFS)

• Log-structured File System (LFS)

– Writes everything (including data blocks and inodes, etc.) to 

the disk sequentially.

– Ex: Writing a data block D and updated inode I to the disk.

• Note: in most systems, data blocks are 4 KB in size, whereas an 

inode is much smaller (e.g., 128 B).

• The idea looks simple, but the devil is in the details!

– Several design issues must be handled carefully.

CSCI5550 Lec04: File System Designs 4



Writing Sequentially, and Effectively!

• Writing to disk sequentially is not (alone) enough to 

guarantee efficient writes.

– In-between the first and second writes, the disk has rotated.

• LFS first buffers all writes in an in-memory segment; 

when the segment is large enough, LFS commits the 

segment to disk as a single large write.

– This technique is well known as write buffering.

– It is possible to buffer writes to different files in a segment.

CSCI5550 Lec04: File System Designs 5



Issue #1: How Much to Buffer? (1/2)

• Assume that 

– 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is time to position (i.e., 𝑇𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑠𝑒𝑒𝑘) the disk head

– 𝑅𝑝𝑒𝑎𝑘 is the disk transfer rate

– 𝐷 is the amount of data to buffer

• Then we can derive

– The time to write the data: 𝑇𝑤𝑟𝑖𝑡𝑒 = 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
𝐷

𝑅𝑝𝑒𝑎𝑘

– The effective rate of write: 𝑅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝐷

𝑇𝑤𝑟𝑖𝑡𝑒
=

𝐷

𝑇
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

+
𝐷

𝑅𝑝𝑒𝑎𝑘

CSCI5550 Lec04: File System Designs 6



Issue #1: How Much to Buffer? (2/2)

• How to get the effective rate close to the peak rate?

• The effective rate is some fraction 𝐹 of the peak rate:

𝑅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝐷

𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
𝐷

𝑅𝑝𝑒𝑎𝑘

= 𝐹 × 𝑅𝑝𝑒𝑎𝑘

• And we can solve for 𝑫 :

𝑫 = 𝐹 × 𝑅𝑝𝑒𝑎𝑘 × 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
𝑫

𝑅𝑝𝑒𝑎𝑘
=

𝐹

1 − 𝐹
× 𝑅𝑝𝑒𝑎𝑘 × 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

• For example, if 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 10 𝑚𝑠, 𝑅𝑝𝑒𝑎𝑘 = 100 𝑀𝐵/𝑠, 
and we want 𝐹 = 0.9 (i.e., 90% of the peak):

𝐷 =
0.9

1 − 0.9
× 100

𝑀𝐵

𝑠
× 10 𝑚𝑠 = 9 (𝑀𝐵)

CSCI5550 Lec04: File System Designs 7



Outline

CSCI5550 Lec04: File System Designs 8

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Issue #2: How to Find Inodes? (1/3)

• UNIX file system keeps inodes at fixed locations.

• In LFS, inodes are scattered throughout disk.

CSCI5550 Lec04: File System Designs 9



Issue #2: How to Find Inodes? (2/3)

• Solution through Indirection: The Inode Map (imap)

– Maps from an inode-number to the disk-address of the 

most recent version of the inode (i.e., one more mapping!).

– Implemented as an array of 4 bytes (disk pointer) per entry.

– Updated whenever an inode is written to disk.

• LFS places the imap right next to where it is writing.

– E.g., when appending a data block, the new data block (D), 

its node (I[k]), and imap are written to disk together:

• Now we can find inodes: But how to find the imap?
CSCI5550 Lec04: File System Designs 10



Issue #2: How to Find Inodes? (3/3)

• The pieces of imap are also spread across the disk.

• Every file system must have some fixed and known 

location on disk to being a file lookup.

• Complete Solution: The Checkpoint Region (CR) 

records disk pointers to all latest pieces of imap.

– Flushed to disk periodically (e.g., every 30 seconds).

CSCI5550 Lec04: File System Designs 11



Example: Reading a File

• To read a file from disk, LFS needs to

 Read the checkpoint region to find the latest imap;

 Read the latest imap to have the disk location of the inode;

 Read the most recent version of the inode (I[k]);

 Read data blocks using direct/indirect pointer as usual.

• To perform the same number of I/Os as UNIX FS, 

LFS must cache the checkpoint region (CR) and the 

entire imap in the system memory.
CSCI5550 Lec04: File System Designs 12

 



Outline

CSCI5550 Lec04: File System Designs 13

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Issue #3: What about Directories? (1/2)

• The directory structure of LFS is identical to UNIX FS.

– The directory is a collection of (name, inode-num) entries.

• When creating a file, LFS writes the data and the new 

inode, the directory and its inode, and the latest imap.

– LFS will do so sequentially on the disk as follows:

• When reading a file in the directory, LFS looks up 

imap (often cached in memory),  directory inode, 

directory data,  imap,  file inode, and  file data.
CSCI5550 Lec04: File System Designs 14

 



Issue #3: What about Directories? (2/2)

• Recursive Update Problem: A serious problem 

arisen in any file system that never updates in place.

– Whenever an inode is updated, its location on disk changes.

• To keep track of inodes, a directory may record a collection of (name, 

inode-location) entries.

– This would have also entailed recursive updates to the 

directory that points to this file, the parent of that 

directory, …, all the way up the file system tree.

• LFS cleverly avoids this problem with imap.

– The directory is a collection of (name, inode-num) entries.

– The imap keeps inode-num to inode-location mappings.

• Even though the location of an inode may change, the change is 

never reflected in the directory itself.

CSCI5550 Lec04: File System Designs 15



Outline

CSCI5550 Lec04: File System Designs 16

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Issue #4: Garbage Collection (1/4)

• LFS never overwrites but writes to free locations.

– Multiple versions of data may co-exist across the disk.

• The old version(s) of data are usually called garbage.

• One could keep older versions and allow accessing.

– Such a file system is known as a versioning file system.

• LFS keeps only the latest live versions of data, and 

periodically cleans old dead versions of data.

– The process of cleaning is called garbage collection (GC).
CSCI5550 Lec04: File System Designs 17

Case 1: Updating a data block D0 Case 2: Appending a data block D1



Issue #4: Garbage Collection (2/4)

• LFS adopts a segment-based cleaning as follows:

 Reads in 𝑀 partially-used segments;

 Determines which blocks are live within these segments;

 Compacts only live contents into 𝑁 new segments (𝑁 < 𝑀);

 Writes out 𝑁 segments to disk in new locations;

 Frees old M segments for subsequent writing.

• Two more problems:

• How to determine if a block is live (or dead)?

• How often, and which segments to clean?

CSCI5550 Lec04: File System Designs 18



Issue #4: Garbage Collection (3/4)

• LFS adds extra information, at the head of each 

segment, called the segment summary block (SS).

– It records, for each data block D in the segment, its inode

number N and its offset T (e.g., (k, 0)).

– The liveness for a block D of address A can be determined:

CSCI5550 Lec04: File System Designs 19

(N, T) = SegmentSummary[A];
inode = Read(imap[N]);
if (inode[T] == A)

// block D is alive
else

// block D is garbage

Optimization:

• Keeping a version number in

both imap and SS, extra reads of

inodes can be further avoided.

• The version number should be

incremented whenever the file is

truncated or deleted.



Issue #4: Garbage Collection (4/4)

• When to clean?

– Either periodically, during idle time, or when the disk is full.

• Which segments are worth cleaning?

– LFS tries to segregate hot and cold segments.

• A hot segment consists of frequently-over-written blocks.

• A cold segment may only have a few over-written (dead) blocks.

– LFS cleans cold segments sooner and hot segments later.

• Since as time goes by, more and more blocks in the hot segment 

may get over-written (in new segments).

• This policy is heuristic but not perfect.

CSCI5550 Lec04: File System Designs 20



Outline

CSCI5550 Lec04: File System Designs 21

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Issue #5: Crash Recovery 

• Crashes when writing to the checkpoint region:

– Solution: Keeps two CRs (e.g., one at the head and one 

at the end) and writes to them alternately.

• It first writes a header (with a timestamp), then the body of CR, and 

then an end marker (with a timestamp).

• Inconsistent pair of timestamps implies an error.

• Crashes when writing to a segment:

– Roll Forwarding: Starts with the last checkpoint region

and rebuilds all “non-checkpointed” but “committed” 

segments (please read the paper for details).
CSCI5550 Lec04: File System Designs 22

CRold



Recall: Metadata Journaling

• The sequence of metadata journaling:

 Data Write: Write data to final location

 Journal Metadata Write: Write the begin block (TxB) and 

metadata (I[v2], B[v2]) to log

 Journal Commit: Write the transaction commit block (TxE)

 Checkpoint Metadata: Write the contents of metadata 

update to their final locations within the file system

 Free: Mark the transaction free in the journal superblock

• Notes:

– Forcing the data write to complete (Step 1) before issuing 

writes to the journal (Step 2) is not required.

– The only real requirement is that Steps 1 and 2 complete 

before the issuing of the journal commit block (Step 3).

CSCI5550 Lec03: File System Basics 23



Outline

CSCI5550 Lec04: File System Designs 24

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



Big Family of File Systems

CSCI5550 Lec04: File System Designs 25

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems


File Implementation: Block Allocation

• Block Allocation: How to allocate disk space to files

• It is a typical way to classify file system designs:

 Indexed Allocation: an index block keeps block pointers

• Examples: UNIX FS, FFS, ext2, LFS

 Linked Allocation: each file is of linked blocks

• Examples: FAT

 Contiguous Allocation: each file is of contiguous blocks

• Examples: ext4

CSCI5550 Lec04: File System Designs 26



Outline

CSCI5550 Lec04: File System Designs 27

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



 Indexed Allocation

• Each file has its own index block, which keeps track 

of all block pointers/locations of a file.

– The 𝑖𝑡ℎ entry in the index block points to the 𝑖𝑡ℎ block.

• Potential Issues:

– The index block could be far away from data blocks.

– Data blocks are scattered across the disk.

CSCI5550 Lec04: File System Designs 28

0 1 2 3

4 5 6 7

8 9 10 I11

12 13 14 15

directory

file index block

a 11

5, 13, 0, …11



Recall: UNIX FS and its Variants

• UNIX file system (and its variants FFS, ext, ext2, 

etc.) are typical representatives of indexed allocation.

– Metadata Region: tracks data and file system information.

– Data Region: stores user data and occupies most space.

CSCI5550 Lec04: File System Designs 29



Recall: Multi-Level Index

• Multi-level index supports files of big sizes.

CSCI5550 Lec04: File System Designs 30

Each ext2 inode

15 disk pointers:

• 12 direct pointers;

• 1 indirect pointer; 

• 1 double indirect pointer;

• 1 triple indirect pointer



Recall: Log-structured File System

• LFS can be also considered as indexed allocation, in 

which the indirection is further introduced:

– The Checkpoint Region (CR):

• Records disk pointers to all latest pieces of imap.

• Flushed to disk periodically (e.g., every 30 seconds).

– The Inode Map (imap)

• Maps from an inode-number to the disk-address of the most 

recent version of the inode (i.e., one more mapping!).

• Updated whenever an inode is written to disk.

• Placed right next to where data block (D) and inode (I[k]) reside.

CSCI5550 Lec04: File System Designs 31



Outline

CSCI5550 Lec04: File System Designs 32

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



 Linked Allocation (1/2)

• Each file is a linked list of disk blocks, which may be 

scattered anywhere on the disk.

– The directory maintains the first and last blocks of the file; 

every block contains a pointer to the next block.

• Each 512-byte block is of 508-byte user data and 4-byte pointer.

– A file can easily continue to grow if there are free blocks.

CSCI5550 Lec04: File System Designs 33

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

directory

file end

a 11

start

3



 Linked Allocation (2/2)

• Potential Issues:

– It can be used effectively only for sequential-access files.

• It is inefficient to arbitrarily access the 𝑖𝑡ℎ block of a file.

– It costs 0.78% (4 B / 512 B) of the disk space for pointers.

• One solution is to collect multiple blocks into a cluster.

– Any lost or damaged pointer makes a big mess.

– Data blocks may be scattered across the disk.

CSCI5550 Lec04: File System Designs 34

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

directory

file end

a 11

start

3



File Allocation Table (FAT)

• File Allocation Table (FAT): 

– A variation on linked allocation (used by MS-DOS and OS/2).

– A table indexed by block number (i.e., one entry per block).

• The directory entry contains the block number of the first block.

• Each FAT entry indicates the block number of the next block.

• There is no need to maintain the 4B block pointer in each data block.

– Problem: The in-disk FAT could be far away from blocks.

CSCI5550 Lec04: File System Designs 35

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

directory

file end

a 11

start

3

FAT

11 9

2 3

3 nil

9 2
directory (of FAT)

file

a 11

start

index



Outline

CSCI5550 Lec04: File System Designs 36

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation



 Contiguous Allocation

• Each file occupy a set of contiguous blocks.

– Block addresses define a linear ordering on the disk.

– Every allocation is defined by the start address and length.

• It is efficient for both sequential and direct access.

• The difficulties are to 1) determine how much space 

is need, and 2) find contiguous space for a file.

CSCI5550 Lec04: File System Designs 37

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

directory

file length

a 0

start

2

b 3 4

c 9 3



Extent

• To avoid over-or-under allocation, some file systems 

(e.g., ext4) adopt a modified contiguous allocation.

– A chunk of contiguous and variable-sized space, extent, is 

allocated whenever the allocated space is insufficient.

CSCI5550 Lec04: File System Designs 38

Four extents 

can be kept 

in ext4 inode

(not shown).

An extent 

tree is used 

to store the 

extents map 

for a big file.
The new ext4 filesystem: current status and future plans (Linux Symposium’07)



Dynamic Allocation Problem

• How to satisfy a request of size 𝑛 from a list of holes?

• Common Solutions: best-fit, worst-fit, and first-fit.

– It is also a common problem of memory management.

CSCI5550 Lec04: File System Designs 39

http://www.r9paul.org/blog/2008/managing-your-memory/

smallest but 

big enough

largest first

Requested

Size: 2



Summary

CSCI5550 Lec04: File System Designs 40

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack• Log-structured File System (LFS)

– Key Idea: Writing Sequentially

– Indirect Mapping and Checkpoint Region

– Directories

– Garbage Collection

– Crash Recovery

• File Implementation: Block Allocation

– Indexed Allocation

– Linked Allocation

– Contiguous Allocation


