HE P L KEF

The Chinese University of Hong Kong

CSCI5550 Advanced File and Storage Systems
Lecture 04: File System Designs

Ming-Chang YANG
mcyang@cse.cuhk.edu.hg

e
9 ; e erasatasecd e S
\ - A N | TR E S RS W —
*3\);3»13‘!!%-." ':l : (BEERe LD b e £
— '.'j — 4"’*""""4“‘;'
== R3- RSy
R Hl |
p— w\'] bbbbbbbbb
orzes \"'I|
R
¥

mailto:mcyang@cse.cuhk.edu.hk

Outline

* Log-structured File System (LFS) /0 Stack
— Key ldea: Writing Sequentially Application
— Indirect Mapping and Checkpoint Region
— Directoties < Kernel

— Garbage Collection File System

— Crash Recovery

Block Layer
* File Implementation: Block Allocation

— Indexed Allocation
— Linked Allocation
— Contiguous Allocation ~ emmmees eeooooe

Device Driver

/O Device

Motivation: Why to develop LFS?

* We need a file system that improves writes:

@® System memories are growing.
* More data can be cached in memory to service reads effeciently.
 Disk traffic increasingly consists of writes.

@ There is a large gap between random 1/O and sequential
I/O performance in disk.

 Disk transfer bandwidth has increased a lot over the years.
— By packing more bits into the surface of a disk.

« Seek and rotational delay costs have decreased slowly.

® Existing file systems perform poorly.
* FFS incurs many short seeks and rotational delays.

@ File systems are not RAID-aware.
* Both RAID-4 and RAID-5 have the small-write problem.
 Existing file systems do not avoid this RAID writing behavior.

CSCI5550 Lec04: File System Designs

Log-structured File System (LFS)

« Log-structured File System (LFS)

— Writes everything (including data blocks and inodes, etc.) to
the disk sequentially.

— EX: Writing a data block D and updated inode I to the disk.

blk[0]:A0
D I

AO

* Note: in most systems, data blocks are 4 KB in size, whereas an
iInode is much smaller (e.g., 128 B).

* The idea looks simple, but the devil is in the detalls!
— Several design issues must be handled carefully.

CSCI5550 Lec04: File System Designs 4

Writing Sequentially, and Effectively! 4

4
-_-Tl!.‘"-

« Writing to disk sequentially is not (alone) enough to
guarantee efficient writes.

— In-between the first and second writes, the disk has rotated.

* LFS first buffers all writes in an in-memory segment;
when the segment is large enough, LFS commits the
segment to disk as a single large write.

— This technique is well known as write buffering.
— It is possible to buffer writes to different files in a segment.

bIk[0]AD bIK[O] A5
blk[1]:A1
D[j,{}] D[j,1] D[j,E] D[j,a] blk[2]:A2 D[k,{}]
blk[3]'A3
A0 A1 A2 A3 Inode[j] A5 Inode[k]

CSCI5550 Lec04: File System Designs 5

Issue #1: How Much to Buffer? (1/2)

 Assume that

= T psition 1S time to position (1.e., T,yai0n T Tseer) the disk head
- R, IS the disk transfer rate
- D is the amount of data to buffer

e Then we can derive

— The time to write the data: T\, = T osition T+ 2
Rpeak
: : D D
— The effective rate of writ€: R ¢(,.¢pe = —)
Twrite

position

Rpeak

CSCI5550 Lec04: File System Designs 6

* How to get the effective rate close to the peak rate?

* The effective rate is some fraction F of the peak rate:

D

Reffective — D = F X Rpeak

T +

position

Rpeak
« And we can solve for D :

position

D F
D=FXR X\T, cirion T = X R XT
peak (position Rpeak) 1—F peak

For example, If T, 10, = 10 ms, R, = 100 MB/s,
and we want F = 0.9 (i.e., 90% of the peak):

D = 07 ><100(MB)><10() =9 (MB
~1-009 s ms) =9 (MB)

CSCI5550 Lec04: File System Designs 7

Outline

* Log-structured File System (LFS) /O Stack
Application
— Indirect Mapping and Checkpoint Region User
""""" Kernel

File System

Block Layer

Device Driver

/O Device

* UNIX file system keeps inodes at fixed locations.
Inodes . Data Region

SEREITITTT [DIDDDIDDIDID] [DDDDIDIDDID] [DIDDDDDDD]
0 7 8 15 16 23 24 31
Data Region

D|D[D[DIDID[DID] [DID]D[D[DIDIDID] [D{DID]DIDID|DID] |IDID[DIDIDID[D[D
32 39 40 47 48 55 56 63

* In LFS, inodes are scattered throughout disk.

blk[0]:A0 bIk[0]:A5
blk[1]:A1
Dy Dy Dy Dy | biki2]A2 | Diegy

blk[3]:A3

A0 Al A2 A3 Inode[j] A5 Inode[k]

CSCI5550 Lec04: File System Designs 9

Issue #2: How to Find Inodes? (2/3)

« Solution through Indirection: The Inode Map (imap)

— Maps from an inode-number to the disk-address of the
most recent version of the inode (i.e., one more mapping!).

— Implemented as an array of 4 bytes (disk pointer) per entry.
— Updated whenever an inode is written to disk.

* LFS places the imap right next to where it is writing.

— E.qg., when appending a data block, the new data block (D),
its node (I[k]), and imap are written to disk together:

blk[0]:AO0 Jmap[k]:A1
D I[k] | imap

A0 A1
 Now we can find inodes: But how to find the imap?

CSCI5550 Lec04: File System Designs 10

Issue #2: How to Find Inodes? (3/3)

* The pieces of imap are also spread across the disk.

« Every file system must have some fixed and known
location on disk to being a file lookup.

« Complete Solution: The Checkpoint Region (CR)
records disk pointers to all latest pieces of imap.

— Flushed to disk periodically (e.g., every 30 seconds).

Imap blk[0]:AO0 |map[k]:A1
[k...k+N]J: _

A2 D | Ik |imap
CR

0 A0 A1 A2

CSCI5550 Lec04: File System Designs 11

Example: Reading a File

* To read a file from disk, LFS needs to
@ Read the checkpoint region to find the latest imap;
@ Read the latest imap to have the disk location of the inode;
® Read the most recent version of the inode (I[k]);
@ Read data blocks using direct/indirect pointer as usual.

imap blk[0]:A0 |map[k]:A1
[K...k+N]J: _
A2 D I[k] | imap
CR
0 @ A @ A1 3 A2 (Q

* To perform the same number of I/Os as UNIX FS,
LFS must cache the checkpoint region (CR) and the
entire imap in the system memory.

CSCI5550 Lec04: File System Designs 12

Outline

* Log-structured File System (LFS) /0 Stack
Application

— Directories Kernel

File System

Block Layer

Device Driver

/O Device

13

Issue #3: What about Directories? (1/2)%%

* The directory structure of LFS is identical to UNIX FS.
— The directory is a collection of (name, inode-num) entries.

 When creating a file, LFS writes the data and the new
Inode, the directory and its inode, and the latest imap.

— LFS will do so sequentially on the disk as follows:

blk[0]:AQ (foo, k) blk[0]:A2 | mapl[k]:A1

Dpg | 1[K] D[i I[dir] |mapidinAs
imap

AO A1 A2 A3

® ® €) @ O ®
 When reading a file in the directory, LFS looks up ©
Imap (often cached in memory), @ directory inode, ®
directory data, @ imap, @ file inode, and ® file data.

CSCI5550 Lec04: File System Designs 14

Issue #3: What about Directories? (2/2)%%

 Recursive Update Problem: A serious problem
arisen in any file system that never updates in place.

— Whenever an inode is updated, its location on disk changes.
» To keep track of inodes, a directory may record a collection of (name,
inode-location) entries.
— This would have also entailed recursive updates to the
directory that points to this file, the parent of that
directory, ..., all the way up the file system tree.

* LFS cleverly avoids this problem with imap.
— The directory is a collection of (name, inode-num) entries.

— The imap keeps inode-num to inode-1location mappings.

« Even though the location of an inode may change, the change is
never reflected in the directory itself.

CSCI5550 Lec04: File System Designs 15

Outline

* Log-structured File System (LFS) /0 Stack
Application

Kernel

— Garbage Collection File System

Block Layer

Device Driver

/O Device

16

Issue #4. Garbage Collection (1/4)

 LFS never overwrites but writes to free locations.

— Multiple versions of data may co-exist across the disk.
* The old version(s) of data are usually called garbage.

Case 1: Updating a data block D@ Case 2: Appending a data block D1

blk[0]:AO blk[0]:A4 blk[0]:AO BJOLAD
ﬂ DO | K] Do | Ik D1 | k]
A0 (both garbage) A4 AO (garbage) A4
* One could keep older versions and allow accessing.
— Such a file system is known as a versioning file system.
* LFS keeps only the latest live versions of data, and
periodically cleans old dead versions of data.

— The process of cleaning is called garbage collection (GC).
CSCI5550 Lec04: File System Designs 17

Issue #4. Garbage Collection (2/4)

 LFS adopts a segment-based cleaning as follows:

@ Reads in M partially-used segments;

@ Determines which blocks are live within these segments;

® Compacts only live contents into N new segments (N < M),
@ Writes out N segments to disk in new locations;

® Frees old M segments for subsequent writing.

« Two more problems:
* How to determine if a block is live (or dead)?
« How often, and which segments to clean?

CSCI5550 Lec04: File System Designs 18

Issue #4. Garbage Collection (3/4)

« LFS adds extra information, at the head of each
segment, called the segment summary block (SS).

— It records, for each data block D in the segment, its inode
number N and its offset T (e.g., (k, 9)).

blk[0]:AQ | mapl[k]:A1
D I[K] | imap

A0 A1
— The liveness for a block D of address A can be determined:

(N, T) = SegmentSummary[A]; | Optimization:

inode = Read(imap[N]); Keeping a version number in

if (inode[T] == A) both imap and SS, extra reads of
// block D is alive inodes can be further avoided.

else The version number should be
// block D is garbage incremented whenever the file is

CSCI5550 Lec04: File System Designs truncated or deleted. 19

Issue #4:. Garbage Collection (4/4)

* When to clean?
— Either periodically, during idle time, or when the disk is full.

* Which segments are worth cleaning?

— LFS tries to segregate hot and cold segments.
* A hot segment consists of frequently-over-written blocks.
* A cold segment may only have a few over-written (dead) blocks.

— LFS cleans cold segments sooner and hot segments later.

« Since as time goes by, more and more blocks in the hot segment
may get over-written (in new segments).

 This policy is heuristic but not perfect.

CSCI5550 Lec04: File System Designs 20

Outline

* Log-structured File System (LFS) /0 Stack
Application

Kernel

File System

Block Layer

— Crash Recovery

Device Driver

/O Device

21

Issue #5: Crash Recovery

* Crashes when writing to the checkpoint region:

— Solution: Keeps two CRs (e.g., one at the head and one
at the end) and writes to them alternately.

« It first writes a header (with a timestamp), then the body of CR, and
then an end marker (with a timestamp).

 Inconsistent pair of timestamps implies an error.

[k.‘.."ﬁ?u]; olk[0]:A0 m_ap[k]:m
o D k] | imap
CR
0 A0 A1 A2

* Crashes when writing to a segment:

— Roll Forwarding: Starts with the last checkpoint region
and rebuilds all “non-checkpointed” but “committed”

segments (please read the paper for details).
CSCI5550 Lec04: File System Designs 22

Recall: Metadata Journaling

* The sequence of metadata journaling:

Data Write: Write data to final location

Journal Metadata Write: Write the begin block (TxB) and
metadata (I[v2], B[v2]) to log

® Journal Commit: Write the transaction commit block (TxE)
@

Checkpoint Metadata: Write the contents of metadata
update to their final locations within the file system

® Free: Mark the transaction free in the journal superblock

e Notes:

— Forcing the data write to complete (Step 1) before issuing
writes to the journal (Step 2) is not required.

— The only real requirement is that Steps 1 and 2 complete
before the issuing of the journal commit block (Step 3).

® ©

CSCI5550 Lec03: File System Basics 23

Outline

/O Stack
Application

Kernel

File System

Block Layer
* File Implementation: Block Allocation

— Indexed Allocation
— Linked Allocation
— Contiguous Allocation ~ emmmees eeooooe

Device Driver

/O Device

24

'Ihu 11‘?;’rr1 F[I".I'i

Efillill::h ing gctenadanded [l i ﬁ'lhf S - F2FSHigh Siema i
n— NILFS ey X3 pos§0 FATLE
m 3HFS Plus Am| g3 [}FS EXt E—I&-P!I-MER NILFS LSFS
FFS GFFS REI’\’.EI’FS o s y ot I_E'UEI D
DF IXFS REFSA[T" a FFS {]DS -1 unifs
Fﬁfé"ﬁex“ i e -
e g ’ : NIV e ProDOS
, FAT16X APFS r HES
XFS g VAL
UFS1 HAMMEHZ

FﬂTBZ FAT32X

HFF?ADFS

g660:] Ef"d—

ot BE File Systemas HPES ges

““"GEMDOS eXt4MFSAdVFsze;rjgjejahler)(t bcachefs

BeeGFS

= potear 4 K O(FS2wsz Huw Glus:tuerFS
----- (BM D05~ ha “ADFS Minix VLFS vy

CSCI5550 Lec04: File System Designs 25

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems

« Block Allocation: How to allocate disk space to files

0 / 8 15 16 23 24 31

32 39 40 47 48 55 56 63

 |tis atypical way to classify file system designs:

@® Indexed Allocation: an index block keeps block pointers
« Examples: UNIX FS, FFS, ext2, LFS

@ Linked Allocation: each file is of linked blocks
« Examples: FAT

® Contiguous Allocation: each file is of contiguous blocks
« Examples: ext4

CSCI5550 Lec04: File System Designs 26

Outline

/O Stack
Application

Kernel

File System

Block Layer
* File Implementation: Block Allocation

— Indexed Allocation _ _
Device Driver

/O Device

27

® Indexed Allocation

« Each file has its own index block, which keeps track
of all block pointers/locations of a file.

— The it* entry in the index block points to the it* block.

e Potential Issues:
— The index block could be far away from data blocks.
— Data blocks are scattered across the disk.

— ¥] directory

0 1 o[13 file index block

12| [13| |44} 15J 115,13, 0, ...
\

CSCI5550 Lec04: File System Designs 28

Recall: UNIX FS and its Variants

e UNIX file system (and its variants FFS, ext, ext2,
etc.) are typical representatives of indexed allocation.

Ty
by
Ty
Ny

- Inodes | Data Region ,
SR ([DDIDIDDDIDID] [DDDDDIDIDID] [DIDIDID[DDIDID
0 718 15 16 23 24 31
e Data Region .
:[DIDIDIDIDIDIDID DDDDU[D--DD]_DDDDDDDD D{DID|D[DID|D[D
:32 39 40 47 &g--.... 55 56 63
: — Metadata Region: tracks data and ﬁ]'er-syst,e..m information.
! — Data Region: stores user data and occupies mostspace.

| | | | The Inode Table (Closeup)
: | | " iblock 0 ' iblock 1 ' iblock 2 ' iblock 3 ' iblock 4

| | | | | | | |
01123 (16(17(18(19(32|33|34|35|48|49|50|51|64|65|66|67
4|5|6|7|20|21|22|23|36(37|38|39|52|53 |54 (55|68 (69 |70(71
9 (101124 |25(26 (27 (40|41 |42 |43 (56|57 |58|59|72|73|74|75

: 12(13(14 (15|28 (29|30|31|44 (45|46 |47 |60|61(|62|63|76|77|78(79| -
: OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB :

Recall: Multi-Level Index

« Multi-level index supports files of big sizes.

Direct
Data Blocks
Indirect
inode Data Blocks
Information
Double Indirect
! Blocks of Data Blocks
2 Pointers
—
: : 2 Blocks of
[[1 Pointers
[[
128
13

14
15

Each ext2 inode - l

-~

15 disk pointers: . 128
« 12 direct pointers; *.

« 1indirect pointer:; K

« 1 double indirect pointer; "

« 1 triple indirect pointer
CSCI5550 Lec04: File System Designs

7
/’
4
4
N

AN RN

e
]

30

Recall: Log-structured File System

e LFS can be also considered as indexed allocation, in
which the indirection is further introduced:

— The Checkpoint Region (CR):
» Records disk pointers to all latest pieces of imap.
» Flushed to disk periodically (e.g., every 30 seconds).

— The Inode Map (imap)

« Maps from an inode-number to the disk-address of the most
recent version of the inode (i.e., one more mapping!).

« Updated whenever an inode is written to disk.
» Placed right next to where data block (D) and inode (I[k]) reside.

imap 10]:A0 |map[k]:A1
[K...k+N]J: _
A2 D I[k] | imap
CR
0 A0 A1 A2

CSCI5550 Lec04: File System Designs 31

Outline

/O Stack
Application

Kernel

File System

Block Layer
* File Implementation: Block Allocation

— Linked Allocation Device Driver

/O Device

32

@ Linked Allocation (1/2)

« Each file is a linked list of disk blocks, which may be
scattered anywhere on the disk.
— The directory maintains the first and last blocks of the file;

every block contains a pointer to the next block.
« Each 512-byte block is of 508-byte user data and 4-byte pointer.

— Afile can easily continue to grow Iif there are free blocks.

~—— R directo ry
: v . \ 4
0 11i| 2 3| |¢4-|-file..start. end
Ta 11 3
4 S|:| 6 7|
—— vV
8 9 10 11
A T
19 13T | e
\ /

CSCI5550 Lec04: File System Designs 33

@ Linked Allocation (2/2)

 Potential Issues:

— It can be used effectively only for sequential-access files.
* Itis inefficient to arbitrarily access the it" block of a file.

— It costs 0.78% (4 B / 512 B) of the disk space for pointers.
* One solution is to collect multiple blocks into a cluster.

— Any lost or damaged pointer makes a big mess.

— Data blocks may be scattered across the disk.
— T

~—— R directo ry
: v . \ 4
0 11i| 2 3| |¢4-|-file..start. end
Ta 11 3
4 S|:| 6 7|
—— vV
8 9 10 11
A T
19 13T | e
\ -

CSCI5550 Lec04: File System Designs 34

File Allocation Table (FAT)

* File Allocation Table (FAT):
— Avariation on linked allocation (used by MS-DOS and OS/2).

— Atable indexed by block number (i.e., one entry per block).
« The directory entry contains the block number of the first block.
« Each FAT entry indicates the block number of the next block.
* There is no need to maintain the 4B block pointer in each data block.

— Problem: The in-disk FAT could be far away from blocks.

= — — - —— -

<) directory 'index FAT
: v_ v |
0 1[7] 2 3] lf-file...start., end | | .
+ e P— 11 = 3 i 2 3 "
4 S[:i| 6 7] 3 nil <
; —~— | m— e
8 9 Bl 10 11 , directory (of FAT) 1o
= o : - 9 2 2 T .
| file start
12 13 14 15 ! 3 11 o 1> 11 9)
~ ___— :

CSCI5550 Lec04: File System Designs 35

Outline

/O Stack
Application

Kernel

File System

Block Layer
* File Implementation: Block Allocation

Device Driver
— Contiguous Allocation ~ smmmmemmomooos

/O Device

36

® Contiguous Allocation

e Each file occupy a set of contiguous blocks.

— Block addresses define a linear ordering on the disk.
— Every allocation is defined by the start address and length.

* |tis efficient for both sequential and direct access.

* The difficulties are to 1) determine how much space
IS need, and 2) find contiguous space for a file.

0 1 2 3
—A—
4 S 6 7))l
8 o| [10| |11
a
12| |13 |14
L =]

CSCI5550 Lec04: File System Designs

directory

file start length
a 0 2
b 3 4

C 9 3

37

Extent

« To avoid over-or-under allocation, some file systems
(e.g., ext4) adopt a modified contiguous allocation.

— A chunk of contiguous and variable-sized space, extent, is
allocated whenever the allocated space is insufficient.

_ leaf nodes
extd_inode disk blocks
. node header
index node
extent
Four extents | node header —
el be kept LblOCK extent inde /Y i -
In ext4 inode eh header‘ /)/ extent
not shown). —
() root ¥
P node header — An gxtent
ot A\ tree is used
S~ P
— to store the
extents map
extent for a big file.

The new ext4 filesystem: current status and future plans (Linux Symposium’07) |

CSCI5550 Lec04: File System Designs 38

Dynamic Allocation Problem

* How to satisfy a request of size n from a list of holes?

« Common Solutions: best-fit, worst-fit, and first-fit.
— It is also a common problem of memory management.

p [— —
P3
[7]

P2 P2 P2 P2

B

Requested
P1 Slze: 2 P1 P1 P1
P3 P3
| smallest but largest first

http://www.r9paul.org/blog/2008/managing-your-memor y/ b|g enough .

CSCI5550 Lec04: File System Designs

Summary

* Log-structured File System (LFS) /0 Stack
— Key ldea: Writing Sequentially Application
— Indirect Mapping and Checkpoint Region
— Directoties < Kernel

— Garbage Collection File System

— Crash Recovery

Block Layer
* File Implementation: Block Allocation

— Indexed Allocation
— Linked Allocation
— Contiguous Allocation ~ emmmees eeooooe

Device Driver

/O Device

40

